12,731 research outputs found

    Relativistic Quantum Transport Theory for Electrodynamics

    Get PDF
    We investigate the relationship between the covariant and the three-dimensional (equal-time) formulations of quantum kinetic theory. We show that the three-dimensional approach can be obtained as the energy average of the covariant formulation. We illustrate this statement in scalar and spinor QED. For scalar QED we derive Lorentz covariant transport and constraint equations directly from the Klein-Gordon equation rather than through the previously used Feshbach-Villars representation. We then consider pair production in a spatially homogeneous but time-dependent electric field and show that the pair density is derived much more easily via the energy averaging method than in the equal-time representation. Proceeding to spinor QED, we derive the covariant version of the equal-time equation derived by Bialynicki-Birula et al. We show that it must be supplemented by another self-adjoint equation to obtain a complete description of the covariant spinor Wigner operator. After spinor decomposition and energy average we study the classical limit of the resulting three-dimensional kinetic equations. There are only two independent spinor components in this limit, the mass density and the spin density, and we derive also their covariant equations of motion. We then show that the equal-time kinetic equation provides a complete description only for constant external electromagnetic fields, but is in general incomplete. It must be supplemented by additional constraints which we derive explicitly from the covariant formulation.Comment: 32 pages, no figures, standard Late

    Nucleon Mass Splitting at Finite Isospin Chemical Potential

    Get PDF
    We investigate nucleon mass splitting at finite isospin chemical potential in the frame of two flavor Nambu--Jona-Lasinio model. It is analytically proved that, in the phase with explicit isospin symmetry breaking the proton mass decreases and the neutron mass increases linearly in the isospin chemical potential.Comment: 3 pages and no figure

    Shattering Thresholds for Random Systems of Sets, Words, and Permutations

    Full text link
    This paper considers a problem that relates to the theories of covering arrays, permutation patterns, Vapnik-Chervonenkis (VC) classes, and probability thresholds. Specifically, we want to find the number of subsets of [n]:={1,2,....,n} we need to randomly select, in a certain probability space, so as to respectively "shatter" all t-subsets of [n]. Moving from subsets to words, we ask for the number of n-letter words on a q-letter alphabet that are needed to shatter all t-subwords of the q^n words of length n. Finally, we explore the number of random permutations of [n] needed to shatter (specializing to t=3), all length 3 permutation patterns in specified positions. We uncover a very sharp zero-one probability threshold for the emergence of such shattering; Talagrand's isoperimetric inequality in product spaces is used as a key tool.Comment: 25 page

    Low-momentum Pion Enhancement Induced by Chiral Symmetry Restoration

    Full text link
    The thermal and nonthermal pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated. The nonthermal decay into pions of sigma mesons which are popularly produced in chiral symmetric phase leads to a low-momentum pion enhancement as a possible signature of chiral phase transition at finite temperature and density.Comment: 3 pages, 2 figure

    Comment on ``Relativistic kinetic equations for electromagnetic, scalar and pseudoscalar interactions''

    Get PDF
    It is found that the extra quantum constraints to the spinor components of the equal-time Wigner function given in a recent paper by Zhuang and Heinz should vanish identically. We point out here the origin of the error and give an interpretation of the result. However, the principal idea of obtaining a complete equal-time transport theory by energy averaging the covariant theory remains valid. The classical transport equation for the spin density is also found to be incorrect. We give here the correct form of that equation and discuss briefly its structure.Comment: 5 pages LaTe

    Turbulent shear-layer mixing: growth-rate compressibility scaling

    Get PDF
    A new shear-layer growth-rate compressibility-scaling parameter is proposed as an alternative to the total convective Mach number, Mc. This parameter derives from considerations of compressibility as a means of kinetic-to-thermal-energy conversion and can be significantly different from Mc for flows with far-from-unity free-stream-density and speed-of-sound ratios. Experimentally observed growth rates are well-represented by the new scaling

    Numerical Simulation for Solute Transport in Fractal Porous Media

    Get PDF
    A modified Fokker-Planck equation with continuous source for solute transport in fractal porous media is considered. The dispersion term of the governing equation uses a fractional-order derivative and the diffusion coefficient can be time and scale dependent. In this paper, numerical solution of the modified Fokker-Planck equation is proposed. The effects of different fractional orders and fractional power functions of time and distance are numerically investigated. The results show that motions with a heavy tailed marginal distribution can be modelled by equations that use fractional-order derivatives and/or time and scale dependent dispersivity

    Logarithmic Representability of Integers as k-Sums

    Full text link
    A set A=A_{k,n} in [n]\cup{0} is said to be an additive k-basis if each element in {0,1,...,kn} can be written as a k-sum of elements of A in at least one way. Seeking multiple representations as k-sums, and given any function phi(n), with lim(phi(n))=infinity, we say that A is a truncated phi(n)-representative k-basis for [n] if for each j in [alpha n, (k-alpha)n] the number of ways that j can be represented as a k-sum of elements of A_{k,n} is Theta(phi(n)). In this paper, we follow tradition and focus on the case phi(n)=log n, and show that a randomly selected set in an appropriate probability space is a truncated log-representative basis with probability that tends to one as n tends to infinity. This result is a finite version of a result proved by Erdos (1956) and extended by Erdos and Tetali (1990).Comment: 18 page

    Thermal and Nonthermal Pion Enhancements with Chiral Symmetry Restoration

    Get PDF
    The pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated in the framework of the Nambu-Jona-Lasinio model. The decay rate for the process sigma -> 2pion to the lowest order in a 1/N_c expansion is calculated as a function of temperature T and chemical potential mu. The thermal and nonthermal enhancements of pions generated by the decay before and after the freeze-out present only in the crossover region of the chiral symmetry transition. The strongest nonthermal enhancement is located in the vicinity of the endpoint of the first-order transition.Comment: Latex2e, 12 pages, 8 Postscript figures, submitted to Phys. Rev.
    corecore